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Abstract: We consider correlators of N = 4 super Yang Mills of the form

A ∼〈O1O2O⋆
1O⋆

2〉, where the operators O1 and O2 are scalar primaries. In particular,

we analyze this correlator in the planar limit and in a Lorentzian regime corresponding to

high energy interactions in AdS. The planar amplitude is dominated by a Regge pole whose

nature varies as a function of the ’t Hooft coupling g2. At large g, the pole corresponds

to graviton exchange in AdS, whereas at weak g, the pole is that of the hard perturbative

BFKL Pomeron. We concentrate on the weak coupling regime and analyze Pomeron ex-

change directly in position space. The analysis relies heavily on the conformal symmetry

of the transverse space E
2 and of its holographic dual hyperbolic space H3, describing with

an unified language, both the weak and strong ’t Hooft coupling regimes. In particular,

the form of the impact factors is highly constrained in position space by conformal invari-

ance. Finally, the analysis suggests a possible AdS eikonal resummation of multi-Pomeron

exchanges implementing AdS unitarity, which differs from the usual 4-dimensional eikonal

exponentiation. Relations to violations of 4-dimensional unitarity at high energy and to

the onset of nonlinear effects and gluon saturation become immediate questions for future

research.
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1. Introduction

String interactions in flat space are dominated, at tree level and in the eikonal regime

s≫ |t|, by a leading Regge pole associated to the exchange of string excitations of increasing

spin, starting with the massless graviton. The same behavior is expected for high energy

interactions of strings in AdS [1 – 7]. In this case, the flat space S-matrix is substituted

by correlators in the dual conformal field theory, and the analogous of a 2 to 2 scattering

amplitude is given by CFT correlators of the form

A ∼ 〈O1 (x1)O2 (x2)O⋆
1 (x3)O⋆

2 (x4)〉 . (1.1)

CFT positions xi play the role of momenta in AdS, with the analogous of a scattering

process achieved by choosing Lorentzian kinematics with x4 in the future of x1, x3 in

the future of x2, and with the pairs x1, x2 and x3, x4 spacelike related [2 – 4], as shown

in figure 1. The relevant AdS eikonal regime is then obtained by sending (x3 − x1)
2 ,

(x4 − x2)
2 → 0. Contrary to a Euclidean configuration, the amplitude A is not dominated

in this limit by the OPE, but by the exchange of operators of maximal spin [3], as in flat

space. Moreover, whenever the spin of the exchanged operators is unbounded, one must

use Regge techniques, as discussed in detail in [7, 6].

We shall focus our attention on the canonical example of Type IIB strings on AdS5×S5,

dual to SU (N) , N = 4 super Yang-Mills (SYM) [8]. The planar contribution N−2Aplanar

to the full amplitude A corresponds to tree level string interactions in AdS and will be

dominated by a Regge pole whose trajectory j (ν, g) will depend on the ’t Hooft coupling

g2 = g2
YMN of the Yang-Mills theory, or dually on the AdS radius ℓ in units of string length√

α′. Moreover, the trajectory j (ν, g) depends, as in flat space, on the transverse momen-

tum transfer
√−t = ν/ℓ. At large coupling g = ℓ2/α′, strings move almost in flat space,

and the Regge spin is given essentially by the flat space trajectory 2 + α′t/2 so that [1, 7]

j (ν, g) = 2− ν2

2g
− 2

g
− · · · , (g →∞) .

Only the third term is not determined by the flat space limit, since it vanishes for ℓ→∞.

It is fixed, however, by the requirement that the graviton is massless in AdS for any value

of g, which translates to j (±2i, g) = 2, as shown in [7]. This implies that, as we decrease

the radius of AdS, the intercept j (0, g) = 2−2/g−· · · decreases from the flat space result.

This paper is concerned, on the other hand, with the leading Regge pole of N = 4

SYM at weak ’t Hooft coupling. The high energy behavior of SYM, when analyzed in

momentum space in four dimensions and in the high energy regime s ≫ |t|, is dominated

by the exchange of a single perturbative BFKL Pomeron [9 – 11]. To leading logarithmic

order, the BFKL Pomeron is independent of the underlying supersymmetry, and dominates

high energy interactions as in conventional QCD. At leading order in g2, the Pomeron is

nothing but a pair of gluons in a color singlet state of effective spin 1. Moreover, the leading

corrections in g modify this trajectory to

j (ν, g) = 1 +
g2

4π2

(
2Ψ (1)−Ψ

(
1 + iν

2

)
−Ψ

(
1− iν

2

))
+ · · · .
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Figure 1: CFT points xi on the boundary of global AdS. Shown is the relevant Lorentzian kine-

matics, with x4 in the future of x1, x3 in the future of x2, and with the pairs x1, x2 and x3, x4

spacelike related. This choice corresponds to a 2 to 2 interaction in the bulk of AdS.

Note that the leading intercept j (0, g) = 1+g2 ln 2/π2+· · · increases for small g2, justifying

the conjecture [1] that the Pomeron trajectory is nothing but the leading string trajectory

at weak coupling, corresponding to string exchange in a highly curved AdS spacetime.

The usual treatment of BFKL Pomeron exchange is conducted in 4-dimensional mo-

mentum space. More precisely, external scattering states are chosen to be momentum

eigenstates with appropriate kinematics, whereas the internal Pomeron propagator is best

described in position space on the space E
2 transverse to the interaction [10]. However,

as discussed above, the more appropriate way to analyze SYM correlators, in view of the

AdS/CFT duality, is to consider them as “S–matrix elements” of interactions in AdS, with

CFT positions playing the role of AdS momenta. It is then natural to reconsider the BFKL

analysis with external states labeled by positions, in the kinematical limit described at the

beginning of this introduction. We shall address this issue, sharpening the conjectured du-

ality between Pomeron exchange and string exchange in AdS. More precisely, we analyze

the couplings of external states to the BFKL Pomeron — the so-called impact factors — in

position space, heavily using the conformal invariance SO (3, 1) of the transverse conformal

space E
2 and of its holographic dual hyperbolic 3-space H3. The formalism allows us to

describe, in a unified and coherent fashion, the Regge pole exchange at weak coupling as

well as at strong coupling.

We shall work mostly with a specific simple example, where the operators O1 and

O2 are given by the chiral primaries Tr
(
Z2
)

and Tr
(
W 2
)
, with Z and W two of the

complex adjoint scalar fields of N = 4 SYM. The correlator (1.1) is known both at weak

coupling [12] at order g4, as well as at strong coupling using the AdS/CFT duality [13], and

it is therefore a good example to describe the general theory. In section 2, after reviewing

some facts on Regge theory in CFT’s [7], we summarize the general results of the paper.

Sections 3 and 4 are then devoted to the proof of these results. More precisely, in section 3

we discuss the general BFKL formalism in position space for generic scalar operators O1

and O2, whereas in section 4 we specialize to the operators Tr
(
Z2
)

and Tr
(
W 2
)
, deriving

their impact factors in position space. Since section 2 contains a summary of our main

findings, as well as open questions, we found it redundant to include a concluding section.

The present paper is focused mostly on the analysis of the planar limit N−2Aplanar

of the correlator (1.1), which corresponds to the exchange of a single Pomeron. On the

– 3 –
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other hand, due to the raising intercept j(0, g) > 1, a single Pomeron exchange generates a

total cross section that grows with energy and inevitably violates unitarity bounds in four

dimensions [14 – 16]. At weak coupling, it is well known that this problem cannot be cured

uniquely by eikonalizing the Pomeron exchange, but one must also consider non-linear

Pomeron interactions which tame the high energy growth and restore unitarity. In the

context of hadronic interactions, this corresponds to the saturation of the hadron gluon

transverse density at small values of Bjorken x and is quite relevant to experimentally

accessible regimes in deep inelastic scattering experiments [14, 15, 17]. Our position space

formalism, on the other hand, is related from the start to interactions in AdS and, in fact,

admits an eikonalization with respect to geodesic motion in five dimensions [4, 7]. Moreover,

the AdS eikonal is clearly valid at strong ’t Hooft coupling, where, for a large range of

AdS impact parameters, the phase shift is of order one and needs to be eikonalized even

though one is quite far from the critical impact parameter where non-linear gravitational

effects start to become important and drive black hole formation. It is then tempting

to speculate that, even at weak coupling, the 5-dimensional AdS eikonal resummation

is valid in some range of the kinematical parameters, and is relevant for the physics of

high energy scattering before the onset of gluon saturation. These issues, as well as the

fascinating relation between gluon saturation and black hole formation where non linear

effects become important [18 – 20], could lead to a possible experimental observation of the

gauge/gravity correspondence and will be the subject of our future investigations [21].

2. General results

2.1 Review of Regge theory for CFT’s

We consider a 4-dimensional conformal field theory defined on Minkowski space M
4. We

parameterize points x ∈ M
4 with two light-cone coordinates x+, x− and with a point x in

the Euclidean transverse space E
2, and we choose the metric −dx+dx− + dx · dx. We will

be interested in the analysis of the correlator

〈O1 (x1)O2 (x2)O⋆
1 (x3)O⋆

2 (x4)〉 , (2.1)

where O1 and O2 are scalar primary operators of dimension ∆1 and ∆2, respectively. By

conformal invariance, the above correlator can be expressed as

1

(x1 − x3)
2∆1 (x2 − x4)

2∆2
A (z, z̄) ,

where the reduced amplitude A depends on the cross-ratios z, z̄ defined by [22]

zz̄ =
(x1 − x3)

2 (x2 − x4)
2

(x1 − x2)
2 (x3 − x4)

2 ,

(1− z) (1− z̄) =
(x1 − x4)

2 (x2 − x3)
2

(x1 − x2)
2 (x3 − x4)

2 .

The reduced amplitude is originally defined for Euclidean configurations with (xi − xj)
2 >

0 and z̄ = z⋆, where it coincides with the amplitude of the Euclidean continuation of

– 4 –
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Figure 2: (a) The kinematics (2.2) and (2.3) for the Lorentzian amplitude Â. (b) For this kinemat-

ics we show the relevant analytic continuation in z, z̄ for Â, starting from the Euclidean amplitude

A with z̄ = z⋆.

the CFT at hand. On the other hand, here we are interested in intrinsically Lorentzian

configurations, with

x4 in the future of x1 ,

x3 in the future of x2 , (2.2)

(xi − xj)
2 > 0 for ij = 12, 34 .

The best intuition for the above configuration comes from thinking of the CFT positions

xi as points on the boundary of global AdS, as in figure 1 in the introduction. The

conditions (2.2) then corresponds to a true Lorentzian scattering process in the dual AdS

geometry. We shall also require that

(xi − xj)
2 > 0 for ij = 13, 24 . (2.3)

This condition is not essential, but streamlines considerably our discussion [7]. For such

configurations, shown in figure 2a, the relevant reduced amplitude is given by a specific

analytic continuation Â of A, as described in figure 2b and in detail in [4, 7]. We shall be

interested in the study of the amplitude Â (z, z̄) in the limit (x1 − x3)
2 , (x2 − x4)

2 → 0,

which implies z, z̄ → 0.

To clarify the underlying geometry of the Lorentzian amplitude, it is best to introduce

the concept of transverse conformal group [7]. Consider the correlator (2.1) as a function

of two points, x3 and x2, fixing the positions of x1 and x4. The subgroup of the conformal

group which leaves the points x1 and x4 fixed is given by SO(1, 1) × SO(3, 1). This fact

is manifest if we use conformal symmetry to send the point x1 to the origin and the point

x4 to infinity, which can be achieved, for instance, by first translating xi → xi − x1 and

then by performing a special conformal transformation y→
(
y a2 − ay2

)
/ (a− y)2, with

y = xi − x1 and a = x4 − x1. Under these transformations the points x3 and x2 are

– 5 –
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mapped, respectively, to −x and x̄/x̄2, with

x =
(x4 − x1) (x3 − x1)

2 − (x3 − x1) (x4 − x1)
2

(x4 − x3)
2 ,

x̄ =
(x2 − x1) (x4 − x1)

2 − (x4 − x1) (x2 − x1)
2

(x4 − x1)
2 (x2 − x1)

2 .

The vectors x and x̄ are defined up to the residual conformal symmetry. This is given by

SO (3, 1) rotations, under which x and x̄ transform as vectors, and by SO(1, 1) dilatations,

under which x→λx and x̄→ x̄/λ. Moreover, for the kinematics (2.2) and (2.3), x is in

the future of x̄/x̄2 and

x, x̄ ∈ M ,

where M ∈M
4 is the future Milne wedge. The reduced amplitude can then be written as

Â (x, x̄)

and depends only on the SO (1, 1) × SO(3, 1) conformally invariant cross-ratios

zz̄ = x2x̄2 , z + z̄ = −2x · x̄ .

We are interested in the limit x, x̄ → 0 of the reduced amplitude. As shown in [3],

this limit is not dominated by the OPE and therefore by operators of lowest conformal

dimension, as in the Euclidean version of the theory, but by the exchanged operators

of maximal spin. Whenever the exchanged spin is unbounded, the limiting x, x̄ → 0

behavior must be analyzed using Regge techniques [7]. In the presence of a Regge pole

with trajectory j (ν), the limit of the reduced amplitude reads1

Â (x, x̄) ≃ 2πi

∫
dν (−)j(ν) α (ν) |4xx̄|1−j(ν) Ωiν (x, x̄) ,

where α (ν) is the pole residue and where Ωiν (x, x̄), given explicitly in [7] and in section 3.4

of this paper, computes radial Fourier transforms in the transverse hyperbolic space H3 ⊂ M

and solves the homogeneous equation
(
�H3 + ν2 + 1

)
Ωiν = 0. In CFT’s with an AdS5

string dual, the hyperbolic space H3 plays the role of the space transverse to the interaction

and ℓ−2
�H3 measures transverse momentum transfer, with ℓ the AdS radius. Therefore,

for large ℓ, we may think of ν/ℓ as momentum transfer in AdS5.

2.2 N = 4 super Yang Mills

We shall focus our attention on the canonical example of N = 4, SU (N) SYM with ’t

Hooft coupling g2 = g2
YMN . The theory is dual to IIB strings on AdS5×S5, with AdS

radius ℓ =
√

α′g and 5-dimensional Newton constant G = πℓ3/2N2. In particular, as a

basic example, let us consider the correlator (2.1), with

O1 = c Tr
(
Z2
)

, O2 = c Tr
(
W 2
)

,

1For simplicity of notation, here and in the rest of the paper we write |4xx̄| instead of the more cum-

bersome expression 4 |x| |x̄|.

– 6 –
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where Z and W are two of the three complex scalar fields of the theory and c is a normal-

ization constant fixed so that the 2-point functions 〈O1O⋆
1〉 and 〈O2O⋆

2〉 are canonically

normalized to 1/ (xi − xj)
4. The operators Oi are chiral primaries and are not renormal-

ized, with ∆1 = ∆2 = 2. Therefore, the reduced amplitude A will read

A = 1 +
1

N2
Aplanar + · · · ,

where 1 represents the disconnected part 〈O1O⋆
1〉 〈O2O⋆

2〉, whereas Aplanar represents the

planar contribution to the amplitude, dual to tree-level string interactions. The planar

contribution depends non-trivially on the ’t Hooft coupling g2 and should be dominated,

in the z, z̄ → 0 Lorentzian regime described above, by the Regge pole associated to the

exchange of the tower of massive string states of lowest twist. In particular, we expect that

the planar contribution should be given by

Âplanar (x, x̄) ≃ 2πi

∫
dν (−)j(ν,g) α (ν, g) |4xx̄|1−j(ν,g) Ωiν (x, x̄) , (2.4)

where we have explicitly shown the g dependence of the trajectory j (ν, g) and of the residue

function α (ν, g).

2.3 Large ’t Hooft coupling

At large ’t Hooft coupling, the dominant Regge trajectory is dual to graviton exchange in

AdS. As shown in [1, 7], the trajectory has a large g expansion given by

j (ν, g) = 2− 4 + ν2

2g
+ · · · .

Moreover, in the limit g →∞, the residue function α (ν, g) is given by [7]

α (ν, g) ≃ −π Vmin (ν, j = 2)
1

4 + ν2
V̄min (ν, j = 2) , (g →∞) .

The term 1/
(
4 + ν2

)
represents the graviton propagator, dual to the CFT stress-energy

tensor of dimension 4, which corresponds2 to ν = −2i. The function Vmin = V̄min is given

explicitly by

Vmin (ν, j) = 4j−1 Γ

(
1 +

j + iν

2

)
Γ

(
1 +

j − iν

2

)

and represents the minimal coupling of the dimension 2 external scalars to the exchanged

trajectory of spin j = j (ν, g). In the limit g → ∞, one has that j → 2 corresponding to

the usual gravitational field, so that

α (ν, g) ≃ −π3

4

ν2
(
4 + ν2

)

sinh2
(

πν
2

) , (g →∞) .

2As discussed in [7], we normalize ν so that CFT dimensions are given by 2 + iν.

– 7 –
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2.4 Weak ’t Hooft coupling

The main focus of this paper is devoted, though, to the analysis of Aplanar at weak coupling

g → 0. The planar amplitude Aplanar has been computed to order g4 in [12], with explicit

result

Aplanar (z, z̄) =− g2

2π2
Φ1 (z, z̄) +

g4

16π4

2 + 2zz̄ − z − z̄

4zz̄
Φ2

1(z, z̄) (2.5)

+
g4

16π4

zz̄

z − z̄

[
Φ2(z, z̄)− Φ2(1− z, 1 − z̄)− Φ2

(
z

z − 1
,

z̄

z̄ − 1

)]
,

where

Φ1(z, z̄) =
zz̄

z − z̄

[
2Li2(z)− 2Li2(z̄) + log(zz̄) log

1− z

1− z̄

]
,

Φ2(z, z̄) =6 [Li4(z)− Li4(z̄)]− 3 log zz̄ [Li3(z)− Li3(z̄)]

+
1

2
log2 zz̄ [Li2(z) − Li2(z̄)] .

Using the fact that for z → 0 the analytic continuation of L̂in(z) is given by L̂in(z) ≃
−2πi lnn−1 (−z) / (n− 1)!, it is easy to show that, in this limit, the Lorentzian amplitude

Âplanar is dominated by the term proportional to g4Φ2
1/zz̄, and it is explicitly given by

Âplanar ≃ −
g4

8π2

zz̄

(z − z̄)2
log2 z̄

z
, (z, z̄ → 0) . (2.6)

The above expression is invariant under rescalings z, z̄ → λz, λz̄, and it therefore cor-

responds to the contribution of a leading Regge pole of spin j = 1. Moreover, explicitly

computing the radial Fourier transform in the transverse space H3, one may show that (2.6)

corresponds to3

α (ν, g) ≃ − i

4π
V (ν)

tanh πν
2

ν
V̄ (ν) , (g → 0) , (2.7)

where

V (ν) = V̄ (ν) =
πg2

2

1

cosh πν
2

. (2.8)

As we shall review in more detail in section 3, the above result is dominated by the Regge

pole of the perturbative hard BFKL Pomeron [9 – 11], with trajectory given by the famous

expression

j (ν, g) = 1 +
g2

4π2

(
2Ψ (1)−Ψ

(
1 + iν

2

)
−Ψ

(
1− iν

2

))
+ · · · ,

which converges to j = 1 for g → 0. In the next section, we shall formulate the usual

BFKL formalism completely in position space and explicitly derive (2.7). The factor

3Defining z̄/z = e−2ρ, one has that Âplanar = −g4ρ2/
`

8π2 sinh2 ρ
´

. Since Âplanar is given by (2.4) for

j = 1, one has that α = 2i
ν

R

∞

0
dρ sin νρ sinh ρ Âplanar, as shown in [7].

– 8 –
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tanh (πν/2) /ν corresponds to the Pomeron propagator, whereas V (ν) and V̄ (ν) corre-

spond to the couplings of external states to the Pomeron, usually called impact factors

in the literature. We shall derive the explicit leading order expressions (2.8) directly in

perturbation theory in position space in section 4, thus rederiving (2.7) without the need

of the full result (2.5).

The use of position space techniques streamlines considerably the usual computations

based on the momentum space BFKL impact factors. In particular, we shall show how the

position space formalism, which uses heavily the invariance under the transverse conformal

group SO(1, 1) × SO(3, 1), immediately implies that only the n = 0 part of the BFKL

kernel gives non-vanishing overlap with impact factors of scalar external states.

2.5 Eikonalization of the Pomeron exchange and saturation

Let us conclude this introductory section with some more speculative considerations. Recall

from [7] that the contribution from a single pomeron exchange grows too fast at high energy

and eventually violates the unitarity bounds. At large impact parameters, we expect that

one should be able to restore unitarity by considering multiple Pomeron exchanges using

eikonal methods. The CFT extension of the usual eikonal resummation, which corresponds

dually to eikonalization in the dual AdS geometry, was developed in [3 – 5] and was gener-

alized to Regge pole exchanges in [7, 6]. Let us first recall the basic facts. In the regime

of small x, x̄, the CFT amplitude Â (x, x̄) admits an impact parameter representation in

AdS given by [3, 7]

Â (x, x̄) =
4 |xx̄|4

π2

∫

M
dydȳ e−2ix·y−2ix̄·ȳ e−2πi Γ(y,ȳ) , (2.9)

where the Fourier integral dydȳ is supported only in the future Milne cone M. The function

Γ (y, ȳ) plays the role of the phase shift and depends on the SO (1, 1)×SO(3, 1) invariants

s = |4yȳ| and cosh r = −y · ȳ/ |yȳ|, which correspond to energy-squared and impact

parameter in the dual AdS geometry. As in flat space scattering, the impact parameter

representation approximates the AdS (conformal) partial wave decomposition for large

values of the impact parameter and energy. In analogy with flat space, AdS unitarity

should be diagonalized by the partial wave decomposition and should simply corresponds

to the requirement ImΓ (y, ȳ) ≤ 0. Let us note, though, that the status of unitarity in AdS

interactions is not on the same firm theoretical grounds as the corresponding statements

in flat space, due to the lack of asymptotic states and of an explicitly unitary S-matrix.

When Γ = 0, there is no AdS interaction and Â = 1. We may then define the planar

phase shift Γplanar by

1

N2
Âplanar (x, x̄) = −2πi

4 |xx̄|4
π2

∫

M
dydȳ e−2ix·y−2ix̄·ȳ Γplanar (y, ȳ) .

Whenever the planar amplitude is dominated, for small x, x̄, by a Regge pole and is given

by (2.4), the above expression can be inverted to get

Γplanar (y, ȳ) ≃ 1

N2

∫
dν β (ν, g) |4yȳ| j(ν,g)−1 Ωiν (y, ȳ) ,
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valid for large y, ȳ, with β(ν, g) defined by

α (ν, g) = Vmin

(
ν, j (ν, g)

)
β (ν, g) V̄min

(
ν, j (ν, g)

)
.

Note that we have

β (ν, g) ≃ − π

4 + ν2
, (g →∞) ,

β (ν, g) ≃ − ig4

π

tanh πν
2

ν (1 + ν2)2
, (g → 0) . (2.10)

In the eikonal approximation, valid in principle for large values of the AdS energy-squared

s and impact parameter r, the full phase shift Γ is approximated by the planar contribution

Γplanar. The eikonal amplitude, resumming multi-Pomeron exchanges, may then be written

as

Âeikonal (x, x̄) ≃ 4 |xx̄|4
π2

∫

M
dydȳ e−2ix·y−2ix̄·ȳ e−2πi Γplanar(y,ȳ) . (2.11)

The eikonal expression (2.11) would then automatically implement unitarity both at weak

and at strong coupling for ImΓplanar ≤ 0. In particular, the g → 0 limit (2.10) given by

Γplanar (y, ȳ) ≃ − ig4

πN2

∫
dν

tanh πν
2

ν (1 + ν2)2
Ωiν (y, ȳ) , (g → 0) ,

has negative imaginary part, as expected.

An important unresolved issue concerns the relation of the 5-dimensional AdS eikonal

expression (2.11) to the standard eikonalization of the correlator (2.1) in four dimensions.

In fact, it is well known that unitarization of the weak coupling BFKL Pomeron exchange

using 4-dimensional eikonal techniques fails to reproduce the correct physics at large en-

ergies and must be supplemented by the far more complex analysis of non-linear Pomeron

interactions, which in turn lead to the phenomenon of gluon saturation in the structure

functions of the scattering states (see [15] for reviews and for an extensive list of relevant

references). On the other hand, multi-Pomeron interactions have never been analyzed using

the AdS expression (2.11). It is quite reasonable that, for a certain range of AdS impact

parameters, the planar approximation to the phase shift is still valid even when the phase

shift is of order one and a single exchange violates the unitarity bound. Let us note that

eikonal resummations are possibly the simplest technique to analyze the ambient geometry,

since it is inherently based on geodesic motion in the spacetime where interactions take

place. Moreover, saturation effects, where non-linear Pomeron interactions are relevant,

have already been seen at present accelerators. It is then quite conceivable that, for care-

fully chosen external kinematics, interactions are approximated by expression (2.11), thus

showing experimentally the duality between field theories and gravity. We plan to address

some of these issues in [21].

3. BFKL analysis in position space

3.1 The BFKL kernel at vanishing coupling

High energy interactions in gauge theories are dominated by hard Pomeron exchange for

s ≫ |t| ≫ ΛQCD. In the Born approximation, the leading contribution at high energies
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Figure 3: Exchange of a BFKL Pomeron. At leading order in the coupling constant, the kernel F

is given by the exchange of a pair of transverse gluons in a color singlet state.

comes from the exchange of a pair of gluons in a color singlet state, and amplitudes4 are

conveniently written as [9, 11]

−s

∫

E2

dz1 · · · dz4 Vq (z1, z3) F (z1, z3, z2, z4) V̄q (z2, z4) . (3.1)

Let us describe qualitatively the main features of (3.1), using as an aid figure 3. First of all,

the overall energy dependence s shows that we are exchanging a Regge pole with effective

spin 1. At high energies, the exchanged gluons are essentially transverse, and are replaced

by a pair of massless propagators

F (z1, z3, z2, z4) = 2 ln (z1 − z2)
2 ln (z3 − z4)

2 (3.2)

in transverse space E
2, where the zi ∈ E

2 are the gluon transverse positions. The coupling of

the pair of gluons to the scattering states is, on the other hand, described by the impact fac-

tors Vq (z1, z3) and V̄q (z2, z4). These factors depend on the transverse momentum transfer

q in E
2 and also on other features of the external incoming and outgoing states, like virtu-

alities and polarizations, which we do not show explicitly. Whenever the scattering states

have vanishing color charge, the impact factors satisfy the infrared finiteness condition [11]
∫

E2

dz1 Vq (z1, z3) =

∫

E2

dz3 Vq (z1, z3) = 0 , (3.3)

and similarly for V̄q (z2, z4). Finally, note that the amplitude is mostly real (imaginary in

the usual field theory convention), leading to an imaginary phase shift.

Let us first concentrate on the Pomeron kernel (3.2) describing the propagation of the

two transverse gluons. At finite ’t Hooft coupling g2 = g2
YMN , the leading corrections

to (3.2) are described by the BFKL equation [9, 11]. As noted by Lipatov in [10], the

BFKL equation is invariant under transverse conformal transformations SO (3, 1) of E
2 if we

assume that F transforms like a 4-point function of scalar primaries of vanishing dimension.

It is then natural to look for solutions depending on the transverse harmonic cross-ratios

(z1 − z3)
2 (z2 − z4)

2

(z1 − z2)
2 (z3 − z4)

2 ,
(z1 − z4)

2 (z2 − z3)
2

(z1 − z2)
2 (z3 − z4)

2 . (3.4)

4In order to have a consistent notation when discussing CFT correlators, we incorporate, in the definition

of the amplitude, the factor of i, using the convention 1 + A as opposed to the more standard field theory

convention 1 + iA.
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Clearly, (3.2) is not invariant under conformal transformations of E
2. However, we are free

to add to the BFKL kernel any function which is independent of at least one of the zi’s,

since physical amplitudes (3.1) are obtained by integrating against impact factors satisfy-

ing (3.3). Therefore, we may substitute the kernel (3.2) with the equivalent conformally

invariant function

F = ln
(z1 − z3)

2 (z2 − z4)
2

(z1 − z2)
2 (z3 − z4)

2 ln
(z1 − z4)

2 (z2 − z3)
2

(z1 − z2)
2 (z3 − z4)

2 . (3.5)

3.2 Explicit transverse conformal invariance

In order to render the transverse conformal invariance manifest, it is best to work in

Minkowski space M
4 on which the transverse conformal group SO(3, 1), introduced in

section 2.1, acts naturally. This discussion entirely parallels the case of the conformal

group SO(d, 2) of d-dimensional Minkowski spacetime, whose action on the light-cone of

an embedding E
d,2 space is linear, as reviewed in [2, 3].

Let us recall some basic notation schematica, denote with M ⊂ M
4 the future Milne

wedge, with ∂M ⊂ M
4 the future light-cone and with H3 ⊂ M ⊂ M

4 the hyperbolic 3-

space of points w ∈ M with w2 = −1, holographically dual to the transverse space of the

gauge theory. The boundary of H3 can also be described invariantly by using the embedding

space M
4. More precisely,5 we may think of transverse space as light-rays in ∂M, i.e. points

z = (z+, z−, z) ∈ M
4 such that z2 = 0 and z± > 0, identifying points z ∼ αz related by a

positive rescaling factor α, as represented in figure 4. Transverse space is then recovered

by taking an arbitrary slice of the light-cone ∂M, choosing a specific representative for

each ray (for an extensive discussion of this point, see for instance [23]). We shall denote

with ∂H3 any given choice of such slice. The standard space E
2 is recovered with the usual

Poincaré choice z+ = 1, so that a generic point is parameterized by points z ∈ E
2 as

z =
(
1, z2, z

)
. (3.6)

Note that, for two points zi and zj of the form above, the inner product

zij ≡ −2zi · zj

computes the usual Euclidean distance (zi − zj)
2, so that the cross-ratios (3.4) can be

written invariantly as
z13 z24

z12 z34
,

z14 z23

z12 z34
,

and the BFKL kernel becomes a function F (z1, z2, z3, z4) of the SO (3, 1) invariants zi ·
zj (i 6= j), invariant under rescalings zi → αizi.

More generally, consider a generic function f (w1, . . . ,wn) invariant under SO (3, 1).

It will generically depend on the n (n + 1) /2 invariants wi ·wj. On the other hand, if we

assume that f has weight ∆i in the i-th entry, scaling as

f (· · · , αwi, . . .) = α−∆if (· · · ,wi, . . .) ,

5In [2], the analogous statements where discussed for the boundary of the full AdS5, seen as light rays

in the embedding space E
4,2.
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Figure 4: Hyperbolic 3-space H3 seen as the unit mass-shell in M
4, given by points w ∈ M with

w2 = −1. The boundary ∂H3 is then naturally identified with lines in the light-cone, given by

points z ∈ ∂M with z2 = 0, defined up to rescalings z ∼ αz.

the number of independent invariants is reduced to n (n− 1) /2 cross-ratios. Finally, if m

of the points wi are boundary points on the light-cone ∂M and therefore satisfy w2 = 0,

the total number of cross-ratios is reduced to

1

2
n (n− 1)−m . (3.7)

The BFKL kernel has n = 4, m = 4 and therefore it has 2 independent cross-ratios, as any

CFT 4-point correlator.

We may obtain conformally invariant functions via integration. More precisely, we

may consider the integral ∫

H3

dwn f (· · · ,wn)

over hyperbolic space H3, which clearly defines a conformal function of the remaining points

w1, . . . ,wn−1. More subtle is to construct conformally invariant functions via integration

over the boundary ∂H3, due to the arbitrariness in the choice of slice of ∂M. One can easily

show that the integral ∫

∂H3

dwn f (· · · ,wn)

is independent of the choice of slice, and therefore conformally invariant, whenever ∆n = 2,

i.e. whenever

f (· · · , αwn) = α−2f (· · · ,wn) .

3.3 The n = 0 component of the BFKL propagator

To analyze the 4-point kernel (3.5), it is best to construct more basic conformal building

blocks. Consider a conformal function dependent on three boundary points z1, z3, z7, re-

spectively with weights 0, 0, 1 + iν. There are no cross-ratios and, up to a multiplicative

constant, it is given uniquely by the 3-point coupling of scalar primaries

(
z13

z17z37

) 1+iν
2

.
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Figure 5: Integral representation of the n = 0 component of the BFKL kernel.

We may then consider the conformally invariant integral

∫

∂H3

dz7

(
z13

z17z37

) 1+iν
2
(

z24

z27z47

) 1−iν
2

(3.8)

shown in figure 5, where the total weight of the integrand in z7 is correctly chosen to be

2. For any value of ν, the above integral defines a conformal function of the four points

points z1, z2, z3, z4 with vanishing weights.

Consider now the leading BFKL propagator (3.5). In general, it can be written as a su-

perposition of integrals of the form (3.8) with a more general integrand [10]. The integrand

itself is always constructed from the product of 3-point functions with an intermediate

state, at the point z7, of general spin n ≥ 0. However, as we shall demonstrate later,

whenever we compute amplitudes (3.1) with external scalar operators, the contributions

from the terms with n > 0 vanish due to conservation of transverse spin. The relevant

n = 0 part of the BFKL kernel can then be written as a superposition of integrals of the

form (3.8) with varying ν. More precisely, we may replace (3.5) with the expression [10]

4

π2

∫
dν

ν2

(1 + ν2)2

∫

∂H3

dz7

(
z13

z17z37

) 1+iν
2
(

z24

z27z47

) 1−iν
2

. (3.9)

3.4 The amplitude in position space

In this paper, we are mostly interested in the analysis of the Lorentzian amplitude

1

N2
Âplanar (x, x̄) (3.10)

in position space, where we recall that x and x̄ are in the future Milne wedge M ⊂M
4. In

particular, we focus our attention on the x, x̄ → 0 limit. As discussed in [7] and reviewed

in section 2, the limit of the planar amplitude is dominated by a leading even signature

Regge pole, whose spin j (ν, g) depends on the ’t Hooft coupling g2. For large g, the pole

corresponds to a reggeized spin–2 graviton exchanged in the bulk of AdS, whereas for

small g the pole corresponds to the exchange of a hard BFKL perturbative Pomeron of

spin approximately 1. Therefore, recalling that the reduced amplitude Âplanar (x, x̄) scales

– 14 –
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Figure 6: Integral representation of the radial Fourier functions Ωiν (x, x̄) and of the basic planar

amplitude Âplanar (x, x̄).

as |xx̄|1−j for a pure spin–j pole [7], we deduce that, in the limit g → 0, the amplitude

Âplanar (x, x̄) will be invariant under rescalings of x and x̄ so that

Âplanar (αx, x̄) = Âplanar (x, αx̄) = Âplanar (x, x̄) , (g → 0) . (3.11)

The amplitude will then depend uniquely on the geodesic distance between the points x/ |x|
and x̄/ |x̄| in the transverse hyperbolic space H3, and has the Fourier decomposition (2.4)

given by

Âplanar (x, x̄) ≃ −2πi

∫
dν α (ν) Ωiν (x, x̄) . (3.12)

As shown in appendix A.3, the Fourier basis of radial functions Ωiν (x, x̄) is conveniently

given by the following integral representation6

Ωiν (x, x̄) =
ν2

4π3

∫

∂H3

dz7

(
−x2

) 1+iν
2

(−2x · z7)
1+iν

(
−x̄2

) 1−iν
2

(−2x̄ · z7)
1−iν

, (3.13)

as shown graphically in figure 6.

3.5 Impact factors in position space

We are now in position to introduce the BFKL formalism in position space, applying it

to the computation of Âplanar (x, x̄) in the limit x, x̄ → 0 and to leading order in g2. The

amplitude Âplanar will be given again by an expression similar to (3.1), but now the external

state impact factors V and V̄ are not labeled by the exchanged transverse momentum q,

but by the positions x and x̄ in the Milne cone M. Therefore we expect the amplitude

Âplanar to be given by an integral of the form

Âplanar (x, x̄) ≃−
∫

∂H3

dz1dz3dz2dz4 V (x, z1, z3) F (z1, z3, z2, z4) V̄ (x̄, z2, z4) . (3.14)

Note that we replaced the integrals over the transverse space E
2 with integrals over an

arbitrary section ∂H3 of the light-cone ∂M.

6In terms of the geodesic distance ρ in H3, given by cosh ρ = − (x · x̄) / (|x| |x̄|), we have that Ωiν =

ν sin νρ/(4π2 sinh ρ), as discussed in [7].
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The form of the impact factors V and V̄ is almost fixed by conformal invariance. In

fact, V (x, z1, z3) must scale in z1 and z3 with weight 2, in order for the integrals over

∂H3 to give a conformally invariant result. Moreover, V (x, z1, z3) must be invariant under

rescalings of x in order to satisfy (3.11). Finally, since z2
i = 0, there is a unique scale-

invariant conformal cross ratio which can be constructed from x, z1 and z3, given by

u =
−x2 z13

(−2x · z1) (−2x · z3)
. (3.15)

The impact factor V must then be of the general form

V (x, z1, z3) =
1

z2
13

V (u) .

Let us first note that, since x ∈ M and z1, z3 ∈ ∂M, the cross-ratio u satisfies

0 ≤ u ≤ 1 .

This can be shown simply by using SO (3, 1) symmetry to rotate x and z3 respectively to

(1, 1, 0) and (1, 0, 0), possibly after an immaterial rescaling. Then, parameterizing z1 =(
1, z2

1 , z1

)
, we obtain z13 = z2

1 and

u =
z2
1

1 + z2
1

.

The infrared finiteness condition (3.3) may also be written simply as

∫ 1

0

du

u2
V (u) = 0 . (3.16)

In fact, by conformal invariance and scaling, we know that the integral (3.3) must be given

by ∫

∂H3

dz1 V (x, z1, z3) = c
−x2

(−2x · z3)
2 ,

where the constant c can be computed as

c =

∫

E2

dz1

z4
1

V

(
z2
1

1 + z2
1

)
= π

∫ 1

0

du

u2
V (u) .

Similar equations apply to V̄ .

3.6 A basis for impact factors

Now we discuss a convenient basis for the functions V (u) satisfying (3.16). We shall

consider the following conformal integral

µ2 c(µ)

∫

∂H3

dz5

(
−x2

) 1+iµ
2

(−2x · z5)
1+iµ

(
z13

z15z35

) 1−iµ

2

, (3.17)

graphically shown in figure 7, where we defined

c(µ) =
1 + µ2

64π5

Γ2
(

1−iµ
2

)

Γ (1− iµ)
.
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Figure 7: Integral representation of the functions φµ(u)+ φ−µ(u) used as a complete basis for the

impact factor V (u).

By conformal invariance, the integral (3.17) is only a function of the cross-ratio u. As

shown in appendix A.5, it is explicitly given by

φµ(u) + φ−µ(u) , (3.18)

where

φµ(u) = iπµ c(−µ) u
1+iµ

2 F

(
1 + iµ

2
,
1 + iµ

2
, 1 + iµ, u

)
,

with F the hypergeometric function 2F1. The functions φµ(u) + φ−µ(u) are a convenient

basis for the impact factor V (u), which we write as

V (u) =

∫
dµ V (µ) [φµ(u) + φ−µ(u)] = 2

∫
dµ V (µ) φµ(u) , (3.19)

where we have chosen

V (µ) = V (−µ)

without loss of generality. Moreover, we shall use the same label V for the impact factor

both as a function of u and of the transformed variable µ, with the hope that the difference

will be clear from context.

Consider the infrared condition (3.16). Since7

∫ 1

0

du

u2
φµ(u) = − iµ

16π4

is odd in µ, it is clear that V (u) satisfies automatically (3.16).

In particular, let us consider V (u) given by a pure power uσ. To satisfy the infrared

condition (3.16), the full expression must be of the form

V (u) = uσ − 1

σ − 1
u2 δ(u) .

7The integral diverges at u = 0 for real µ and it is computed by analytically continuing the result

obtained for Imµ < −1.
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As shown in appendix B, this corresponds to a transform V (µ) in (3.19) given by

V (µ) =
8π3

1 + µ2

Γ
(
σ − 1

2 + iµ
2

)
Γ
(
σ − 1

2 −
iµ
2

)

Γ2 (σ)
.

In particular, we shall see that the relevant impact factor in section 4 will be

V (u) = u2
[
1− δ(u)

]
,

corresponding to

V (µ) =
2π4

cosh πµ
2

. (3.20)

3.7 Computation of the BFKL amplitude

We are now in position to compute the amplitude (3.12) starting from impact factors V

and V̄ . More precisely, we shall show that the new BFKL integral representation (3.14)

gives an amplitude of the form (3.12) with

α(ν) = − i

4π
V (ν)

tanh πν
2

ν
V̄ (ν) . (3.21)

This will be the main result of this section, showing (2.7).

We start by replacing, in the amplitude (3.14), the n = 0 part of the BFKL kernel (3.9),

thus obtaining

Âplanar (x, x̄) ≃− 4

π2

∫
dν

ν2

(1 + ν2)2

∫

∂H3

dz7

∫

∂H3

dz1dz3 V (x, z1, z3)

(
z13

z17z37

) 1+iν
2

(3.22)

∫

∂H3

dz2dz4 V̄ (x̄, z2, z4)

(
z24

z27z47

) 1−iν
2

.

We shall first focus on the second line of this expression. Replacing the integral represen-

tation (3.19) for the impact factor V , we obtain the following conformal integral

∫
dµ V (µ) µ2 c(µ)

∫

∂H3

dz5

(
−x2

) 1+iµ
2

(−2x · z5)
1+iµ

×
∫

∂H3

dz1dz3

z2
13

(
z13

z15z35

)1−iµ

2
(

z13

z17z37

) 1+iν
2

,

(3.23)

shown graphically in figure 8. Let us note that the second line of this expression, highlighted

in figure 8 with a continuous line, is almost completely fixed by conformal invariance. It

is, in fact, a conformal function f (z5, z7) with weights 1 − iµ and 1 + iν, respectively in

the two entries. Since the only conformal invariant is z57, the function f must vanish for

µ 6= −ν and must be proportional to z−1−iν
57 for µ = −ν. The second possibility is a contact

δ-function contribution δ (z5, z7), defined as usual by
∫

∂H3

dz7 δ (z5, z7) g (z7) = g (z5) . (3.24)
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Figure 8: Basic overlap between the functions φµ(u) + φ−µ(u), which are a basis for the impact

factor V (u), and the left part of the n = 0 component of the BFKL kernel.

The function δ (z5, z7) is conformally invariant whenever the weights in z5 and z7 sum to

2. In fact, if g is of weight ∆, the above integral is well defined when the weight in z7 is

2−∆ and, for (3.24) to be satisfied, the weight in z5 must be ∆. Therefore, the δ-function

contribution to f can be non-vanishing only for µ = ν. The exact integral f has been

explicitly computed by Lipatov in [10], with the result

4π4

ν2
δ (z5, z7) δ(ν − µ) +

4π3

iν

c(ν)

c(−ν)

1

z1+iν
57

δ(ν + µ) .

We may then complete the computation of (3.23), performing the integral in z5 to obtain

4π4

(
−x2

) 1+iν
2

(−2x · z7)
1+iν

∫
dµ V (µ) c(µ)

[
δ(ν − µ) +

c(ν)

c(−ν)
δ(ν + µ)

]
,

where in the second term we have used the conformal integral

∫

∂H3

dz5

(
−x2

) 1−iν
2

(−2x · z5)
1−iν

1

z1+iν
57

=
iπ

ν

(
−x2

) 1+iν
2

(−2x · z7)
1+iν

from appendix A.2. Finally, computing the µ integral and using the fact that V (ν) = V (−ν)

we obtain the final result for the second line of (3.22)

8π4

(
−x2

) 1+iν
2

(−2x · z7)
1+iν

V (ν) c(ν) .

We may carry out an equivalent computation for the second impact factor V̄ . Combining

the two expressions, we conclude that the BFKL amplitude (3.22), graphically shown in

figure 9, is given by

−256π6

∫
dν ν2 V (ν)

c(ν)c(−ν)

(1 + ν2)2
V̄ (ν)×

∫

∂H3

dz7

(
−x2

) 1+iν
2

(−2x · z7)
1+iν

(
−x̄2

) 1−iν
2

(−2x̄ · z7)
1−iν

.
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Figure 9: Full BFKL amplitude, written as a product of the left and right impact factors and of

the n = 0 component of the BFKL kernel.

Using the fact that

c(ν) c(−ν)

(1 + ν2)2
=

1

4 (2π)9
tanh πν

2

ν
,

together with the integral representation (3.13) for the radial Fourier functions Ωiν (x, x̄),

we obtain the final result for the amplitude

−1

2

∫
dν V (ν)

tanh πν
2

ν
V̄ (ν) Ωiν (x, x̄) ,

thus proving (3.21).

3.8 Vanishing of the n > 0 contributions

We have previously claimed, without proof, that the unique contribution to the BFKL

amplitude (3.14) comes from the n = 0 part (3.9) of the complete two-gluon kernel (3.5),

whenever the external states are scalar operators. This fact is now almost trivial to show.

In fact, the n > 0 terms would involve, similarly to the discussion in section 3.7, an overlap

integral of the general form (3.23). The only difference would come from the second line

of (3.23), which would have a 3-point coupling at points z1, z3, z7 with a spin n 6= 0

state located at z7. The full integral on the second line of (3.23) would then vanish by

conservation of transverse spin, as shown also in [10], since it would connect a spin 0 state

at z5 to a spin n 6= 0 at z7.

In this paper we consider only scalar external operators for simplicity. We could have

considered more general external states in various representations of the 4-dimensional

conformal group. For example, we could have chosen spin J external states. In this case,

the impact factors V would have a non trivial index structure coming from the external

operator O1 at points x1,x3, and the basis functions (3.17) need to be modified to include

this extra structure. It is natural to expect that this will involve contributions of transverse

conformal spin n ≤ 2J coming from the indices at the two points x1,x3. This fact was

shown in a non-transparent way in [24] for the case J = 1, which is relevant to interactions

with off-shell photons in deep inelastic scattering processes at small values of Bjorken x.
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Figure 10: Kinematics used for the computation of the impact factors. (a) We choose x1 =

(−∞, 0, 0) and x4 = (∞, 0, 0), and vanishing transverse parts of x2,x3. As shown in the text

±x±

2 ,±x±

3 > 0, with x3 in the future of x2. (b) The limit z, z̄ → 0, with fixed ratio z̄/z, described

in the text.

4. Impact factors in N = 4 SYM

In this section, we apply the position space BFKL formalism to the computation of the

N = 4 SYM 4-point function

〈O1 (x1)O⋆
1 (x3)O2 (x2)O⋆

2 (x4)〉

discussed in section 2. Recall that the operators O1 and O2 are given by

O1 = c Tr
(
Z2
)

, O2 = c Tr
(
W 2
)

,

with Z and W adjoint complex scalar fields, and are normalized so that their 2-point

function is

〈O1 (x)O⋆
1 (y)〉 = 〈O2 (x)O⋆

2 (y)〉 =
1

(
(x− y)2 + iǫ

)2 .

In the conventions of appendix C, the constant c is given by

c =
4π2

g2
YM

√
2√

N2 − 1
.

In particular, we shall compute explicitly the impact factors V and V̄ for the operators O1

and O2 to leading order in perturbation theory, thus showing (2.8).

4.1 Some kinematics

To simplify the computation, it is convenient to carefully choose the kinematics. We shall

write x = (x+, x−, x) to compactly show the light-cone and transverse components of a

vector x. Following [7], we choose

x1 = (−s, 0, 0) , x4 = (0, s, 0) ,
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and we shall consider the limit s→∞. The conditions (2.2) and (2.3) then imply that

x+
3 , x+

2 > 0 , x−
3 , x−

2 < 0 ,

and that x3 is in the future of x2. In the limit s→∞ the expressions for x, x̄ in section 2.1

simplify to

x =
s

x+
3

(
s,

1

s
x2

3 , x3

)
, x̄ = − 1

sx−
2

(
s,

1

s
x2

2 , x2

)
.

Recall that x, x̄ are defined up to the residual SO (1, 1) × SO(3, 1) transverse conformal

symmetry. Therefore, rescaling x→ x/s and x̄ → sx̄, and boosting x± → x±s∓1, we

obtain the expressions

x =
1

x+
3

(
1,x2

3, x3

)
, x̄ = − 1

x−
2

(
1,x2

2, x2

)
,

as in [7]. We can further simplify our computations by choosing the transverse parts x2, x3

of the points x2,x3 to vanish, so that

x =

(
1

x+
3

,−x−
3 , 0

)
, x̄ =

(
− 1

x−
2

, x+
2 , 0

)
.

In this convenient kinematical setup, shown in figure 10a, the cross-ratios z, z̄ read

z =
x−

3

x−
2

, z̄ =
x+

2

x+
3

.

The limit z, z̄ → 0 with fixed ratio z̄/z can then be achieved by sending x+
3 → ∞, with

x+
3 x−

3 fixed, and x−
2 → −∞, with x+

2 x−
2 fixed, as shown in figure 10b.

4.2 Impact factor

Let us now compute the impact factor for the external operator O1. A similar computation

would give the impact factor of O2. The leading order diagrams that contribute to the

BFKL vertex V (x, z1, z3) are given in figure 11, representing the emission of two gluons.

The full correlator is then obtained by connecting both vertices V and V̄ with a Pomeron

propagator, as described in figure 12, where the factor of 1/2 is the overall symmetry factor

of the diagram. To leading order in perturbation theory, the Pomeron propagator is simply

given by the exchange of two gluons in a color singlet state.

First we consider the contribution coming from diagram 11a. Since we are inter-

ested in the reduced amplitude, we must divide the diagram by the two point function

〈O1 (x1)O⋆
1 (x3)〉. Fixing for now the position of the gluons at z1 and z3, the Feynman

rules give
(
− i

g2
YM

)2

fmna fmnb

(
g2
YM

4π2

)4

c2 (x1 − x3)
4

(
1

(x1 − z1)
2 + iǫ

←→
∂z

µ
1

1

(x3 − z1)
2 + iǫ

)

(
1

(x1 − z3)
2 + iǫ

←→
∂zν

3

1

(x3 − z3)
2 + iǫ

)
,
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Figure 11: Perturbative expansion of the impact factor. Two gluons are emitted in a color singlet

at points z1 and z3, which become points in transverse space.

Figure 12: Perturbative expansion of the BFKL kernel. The leading term corresponds to the

exchange of a pair of gluons in a color singlet state.

where µ, ν and a, b are the spacetime and color indices of the gluons emitted at z1, z3. We

remark that for now z1 and z3 are points in the physical 4-dimensional Minkowski space-

time. Later on in the computation these points will collapse to transverse space E
2, and

we shall used the embedding formalism described in section 3.2. Simplifying the overall

constant in the above expression, we obtain

− 2Nδab

(2π)4 (N2 − 1)

(
(x1 − x3)

2

(x1 − z1)
2 + iǫ

←→
∂z

µ
1

1

(x3 − z1)
2 + iǫ

)

(
(x1 − x3)

2

(x1 − z3)
2 + iǫ

←→
∂zν

3

1

(x3 − z3)
2 + iǫ

)
, (4.1)

which represents the emission at z1 and z3 of two gluons in a color singlet, respectively

with polarizations µ and ν.

As claimed in the previous section, the perturbative computation simplifies consider-

ably if we choose the external kinematics using conformal invariance to set x1 → (−∞, 0, 0)

and x3 →
(
x+

3 , x−
3 , 0

)
. Then, the term in brackets in the first line of (4.1) becomes

x−
3

z−1 − iǫ

←→
∂z

µ
1

1

−
(
x+

3 − z+
1

) (
x−

3 − z−1
)

+ z2
1 + iǫ

.

A similar expression can be obtained for the other bracket with z1 replaced by z3. Since

the BFKL kinematical limit corresponds to x+
3 large with the product x+

3 x−
3 held fixed,

this last expression is dominated by the derivative with µ = −, with the leading result

x−
3

z−1 − iǫ

←→
∂

z−1

1

x+
3

(
z−1 − x−

3

)
+ z2

1 + iǫ
. (4.2)
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As expected, the emitted gluons have polarization µ = ν = −. The computation of the

impact factor for the external operatorO2 on the other side of the graph is analogous to that

of O1, representing the emission of gluons at z2 and z4. In this case we set x4 → (0,+∞, 0)

and x2 →
(
x+

2 , x−
2 , 0

)
, and then take the BFKL kinematical limit of large negative x−

2 with

x−
2 x+

2 fixed. The emitted gluons will have polarization µ̄ = ν̄ = +.

To identify the impact factors and the BFKL kernel one needs to integrate over the

internal vertices z1, z2, z3 and z4, and to add the gluon propagators, as described by

figure 12. Considering, for example, the vertex at z1, we shall split the integration in

transverse and light-cone directions according to
∫

dz1 =

∫
dz1 dz−1

dz+
1

2
.

In the BFKL kinematical limit, the external scalar lines are almost on-shell, while the

exchanged gluons are off-shell. When computing the full diagram and integrating over z−1 ,

the residues at the poles in expression (4.2) are dominant with respect to the residues at

the poles in the gluon propagators, as we take x+
3 large with fixed product x+

3 x−
3 . Putting

together equations (4.1) and (4.2) and dropping the color factor δab, we conclude that the

contribution of the diagram in figure 11a to the impact factor is given by

− 2N

(2π)4 (N2 − 1)

(
x−

3

)2
∫

dz−1
1

z−1 − iǫ

←→
∂z−1

1

x+
3

(
z−1 − x−

3

)
+ z2

1 + iǫ∫
dz−3

1

z−3 − iǫ

←→
∂z−3

1

x+
3

(
z−3 − x−

3

)
+ z2

3 + iǫ
,

corresponding to the emission of two gluons in a color singlet, located at z1 and z2 in

transverse space and with polarization µ = ν = −. These integrals are easily computed by

deforming the contour of integration, with the result

2N

π2 (N2 − 1)

−x+
3 x−

3(
−x+

3 x−
3 + z2

1

)2
−x+

3 x−
3(

−x+
3 x−

3 + z2
3

)2 . (4.3)

Note that, after integrating in z−1 and z−3 , and taking the BFKL limit x+
3 →∞, the resulting

expression is independent of the other light-cone variables z+
1 and z+

3 . The expression

depends only on the gluon positions z1, z3 in transverse space E
2. Recalling from section 3.2

that explicit transverse conformal invariance is rendered manifest by considering the usual

transverse space E
2 as the canonical Poincaré slice of the light-cone ∂M, we set zi =(

1, z2
i , zi

)
. Note that we use the same label zi both for the original position of the gluons

and for the points of the Poincaré slice. This slight abuse of notation is justified by the

fact that the relevant transverse parts coincide. It is then immediate to show that the

crossratio u in (3.15) is given by

u =
−x+

3 x−
3 (z1 − z3)

2

(
−x+

3 x−
3 + z2

1

) (
−x+

3 x−
3 + z2

3

) , (4.4)

so that expression (4.3) can be finally written as

1

z 2
13

2N

π2 (N2 − 1)
u2 , (4.5)
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where we recall that zij = −2zi · zj = (zi − zj)
2.

Before we compute the contribution to the impact factor of the remaining diagrams

in figure 11, let us consider the BFKL kernel. In the above computation we saw that the

residues of the poles at z−1 = z−3 = 0 and at z+
2 = z+

4 = 0 are independent of the other

light-cone integration variables z+
1 , z+

3 , z−2 and z−4 . Therefore, when computing the full

diagram, we can move these integrals to the gluon propagators. It is then clear that the

leading order BFKL propagator, as represented in figure 12, is given by

1

2

∫
dz+

1

2

dz−2
2

D−+
aā (z1, z2)

∫
dz+

3

2

dz−4
2

D−+
aā (z3, z4) , (4.6)

where the spacetime gluon propagators Dµν
aā (zi, zj) are computed at the above poles z−1 =

z−3 = 0 and z+
2 = z+

4 = 0. The overall factor of 1/2 comes from the symmetry factor of the

diagram, while the factors of 1/2 inside the integration come from the measure. A simple

computation, using

∫
dz+dz−

2

1

(−z+z− + z2 + iǫ)
= −iπ ln z2 ,

gives the transverse gluon propagators8

− g4
YM

(8π)2
(
N2 − 1

)
2 ln (z1 − z2)

2 ln (z3 − z4)
2 .

The full amplitude has now the BFKL structure (3.14). The minus sign of (3.14) corre-

sponds to the sign of the previous equation. Moreover, to match the convention (3.2) for

the two-gluon leading propagator, we shall multiply, at the end of the computation, the

graphs in figure 11 used to compute the impact factor by

g2
YM

8π
N
√

N2 − 1 , (4.7)

where the extra factor of N comes from our convention on planar amplitudes (3.10) which

explicitly shows an overall factor of N−2.

Now we compute the contribution to the impact factor of the diagram in figure 11b

(
− i

g2
YM

)2

fmna fnmb

(
g2
YM

4π2

)4

c2 (x1 − x3)
2

1

(x1 − z1)
2 + iǫ

←→
∂z

µ
1

1

(z1 − z3)
2 + iǫ

←→
∂zν

3

1

(x3 − z3)
2 + iǫ

,

which in the BFKL kinematical limit simplifies to

2Nδab

(2π)4 (N2 − 1)

x−
3

x+
3

1

z−1 − iǫ

←→
∂z

µ
1

1

(z1 − z3)
2 + iǫ

←→
∂zν

3

1

z−3 − x−
3 +

z2
3

x+
3

+ iǫ
.

8The result is independent of the gauge choice, since the gluon propagators have zero longitudinal

momenta and have −+ polarization.
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If we write, in the full diagram, the gluon propagators in the Landau gauge, after integrating

by parts we may act with the derivatives only on the internal scalar line, with the result

− 8Nδab

(2π)4 (N2 − 1)

x−
3

x+
3

1

z−1 − iǫ

1

z−3 − x−
3 +

z2
3

x+
3

+ iǫ
(4.8)

(
∂z

µ
1

∂zν
3

1

(z1 − z3)
2 + iǫ

)
.

The impact factor is then computed after integrating this expression in z−1 and z−3 . The

corresponding residues dominate the residues at the poles of the gluon propagators. First

we note that there are singularities in the previous equation for

{
z−1 = iǫ

z−1 = z−3 − (z1−z3)
2

z+
3 −z+

1

∓ iǫ
,





z−3 = x−
3 −

z2
3

x+
3

− iǫ

z−3 = z−1 + (z1−z3)
2

z+
3 −z+

1

± iǫ
,

where the upper and lower signs correspond, respectively, to z+
3 > z+

1 and z+
3 < z+

1 . It is

then clear that the z−1 and z−3 integrals are non-vanishing only for z+
3 > z+

1 , which has the

physical interpretation of ordering the interaction vertices in light-cone time. Therefore, we

may deform the z−1 and z−3 integrals in the upper and lower half plane, respectively, picking

the contributions of the poles at z−1 = 0 and at z−3 = x−
3 − z2

3/x+
3 . To compute the relevant

residues, let us first note that, in the BFKL kinematical regime, the pole in z−3 satisfies

z−3 → 0 and one needs to keep only the dominant term in this limit. A simple computation

shows that again gluons with polarizations µ = − and ν = − give the dominant term. In

particular, at the poles we have

∂z−1
∂z−3

1

(z1 − z3)
2 = − 2

(
z−3
)2

(
z−3
(
z+
3 − z+

1

))2
(
−z−3

(
z+
3 − z+

1

)
+ (z1 − z3)

2
)3

→ − π
(
z−3
)2 δ(2) (z1 − z3) ,

where the last limit is obtained for z−3 = x−
3 − z2

3/x+
3 → 0 using a standard representation

of the δ-function.9 We may now return to the computation of the impact factor in (4.8),

integrating over z−1 and z−3 we obtain (dropping again the color factor δab already included

in the two-gluon kernel (4.6))

− 2N

π (N2 − 1)

−x+
3 x−

3(
−x+

3 x−
3 + z2

3

)2 δ(2) (z1 − z3) . (4.9)

Again this result does not depend of z+
1 and z+

3 so that, when computing the full diagram,

their integration can be moved to the gluon propagators in (4.6). Here one needs to be

careful because the contribution of this diagram gives the restriction z+
3 > z+

1 to the

9For µ, ν given by −, i and i, j, there are terms in ∂z
µ

1

∂zν

3
(z1 − z3)

−2 which are also of order (z−

3 )−2.

Such terms are proportional to (zi
1 − zi

3) δ(2)(z1 − z3) and therefore vanish.
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gluon integration. However, repeating the same arguments for the diagram in figure 11c,

we recover the whole integration domain. The contribution to the impact factor of the

diagrams in figure 11b and 11c is then given by (4.9).

Defining the delta function along a radial coordinate in E
2 as

δ(2)(z) =
1

π
δ(r2) ,

∫ ∞

0
d(r2) δ

(
r2
)

= 1 ,

and using the explicit expression for u in (4.4), we have that

δ (u) = π

(
−x+

3 x−
3 + z2

3

)2

−x+
3 x−

3

δ(2) (z1 − z3) ,

so that (4.9) reads

− 1

z 2
13

2N

π2 (N2 − 1)
u2 δ (u) . (4.10)

Finally, we add the contributions (4.5) and (4.10) from all diagrams in figure 11 and

multiply by (4.7) to obtain the correctly normalized impact factor. Taking the large N

limit we obtain

V (u) =
g2

4π3
u2
[
1− δ(u)

]
,

where we recall that g2 = g2
YMN is the ’t Hooft coupling. Note that the above expression

satisfies the infrared finiteness condition (3.16). Using (3.20), this corresponds to

V (µ) =
π g2

2

1

cosh πµ
2

,

thus confirming equation (2.8).

Let us conclude by quoting a simple extension of the result above which we prove in

appendix D. We could have considered the more general operator

O1 = cL Tr
(
ZL
)

,

where again cL is chosen so that the 2-point function 〈O1 (x)O⋆
1 (y)〉 is normalized to

|x− y|−2L. One may compute the corresponding leading order impact factor V (u) quite

easily. In fact, the spacetime part of the computation is independent of L and the unique

difference is related to the color factors. A careful analysis shows that the impact factor in

this case is given by

V (u) =
g2L

8π3
u2
[
1− δ(u)

]
. (4.11)
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A. Conformal integrals

A.1 General integrals

We shall work with vectors x = (x+, x−, x) in (d + 2)-dimensional Minkowski space M
d+2

with norm x2 = −x+x− + x · x, and we define, as in the main text, the usual subspaces

M future Milne wedge ,

Hd+1 ⊂ M hyperbolic space of points with w2 = −1 ,

∂M future light-cone of points with w2 = 0 ,

∂Hd+1 coiche of arbitrary slice of the light-rays in ∂M .

Let us consider first the following conformal integrals10

D (w1, . . . ,wn) =
2

Γ
(

∆−d
2

)
∫

Hd+1

d̃y
∏

i

1

(−2y ·wi)
∆i

,

where the points wi are generically in M, or on the boundary ∂M, and carry weight ∆i,

and where we have defined

∆ =
∑

i∆i .

The above integral converges for

Re ∆ > d ,

Re∆i < Re
∑

j 6=i∆i if wi ∈ ∂M , (A.1)

and admits the following Feynman parameter representation [2]

D (wi) =
2π

d
2∏

iΓ (∆i)

∫ ∏
idti t∆i−1

i e−
1
2

P

i,j titj wij , (A.2)

with wij = −2wi ·wj. We will be more interested in the closely related conformal integral

D̃ (w1, . . . ,wn) =

∫

∂Hd+1

d̃z
∏

i

1

(−2z ·wi)
∆i

, (A.3)

where we demand that

∆ = d

in order for the result to be conformally invariant. Whenever a point wi is on the boundary

∂M, the convergence of the integral (A.3) is again ensured by (A.1), which can also be

written as Re∆i < d/2. To compute the integral (A.3), we choose the Poincaré slice for

∂Hd+1, given by z =
(
z2, 1, z

)
, so that

∫

∂Hd+1

d̃z→
∫

Ed

dz .

10The normalization chosen for the D-functions differs by a factor 2/Γ
`

∆−d
2

´

from the one chosen in [2].
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Using the usual Schwinger representation for the propagators (−2z ·wi)
−∆i we obtain

1∏
iΓ (∆i)

∫ ∏
idti t∆i−1

i

∫

Ed

dz e2W·z ,

where we defined W =
∑

iwiti. Since 2W · z =−W+ −W−z2 + 2W · z, the integral over

E
d in z is gaussian and may be evaluated, with the result

π
d
2∏

iΓ (∆i)

∫ ∏
idti t∆i−1

i

(
W−

)− d
2 e

W
2

W− .

Finally, changing variables ti → tiW
−, with

∏
idti → 2

∏
idti (W

−)
2
, we obtain exactly the

same expression (A.2) for the functions D (wi), with the restriction ∆ = d. From now on

we shall therefore drop the tilde.

Let us conclude by recalling that, if we take m of the n points wi to live on future

light-cone ∂M, the function D depends in general on

1

2
n (n− 1)−m

independent cross-ratios.

A.2 Two point function n = 2, m = 1

This is the simplest case, with no cross-ratios. Assuming that w2 ∈ ∂M and Re∆2 < Re ∆1

we have that

D (w1,w2) = π
d
2
Γ
(

∆1−∆2
2

)

Γ (∆1)
· |w1|∆2−∆1

w∆2
12

,

where the overall normalization is computed from the integral

2π
d
2

Γ (∆1) Γ (∆2)

∫
dt1dt2 t∆1−1

1 t∆2−1
2 e−t1t2−t21 .

A.3 Two point function n = 2, m = 0

In this case we have one independent cross-ratio, which we choose to be given by

u =
1

2
− 1

4

w12

|w1| |w2|
.

We then have that

D (w1,w2) =
1

|w1|∆1 |w2|∆2
D2(u) ,

where

D2(u) =
2π

d
2

Γ (∆1) Γ (∆2)

∫
dt1dt2
t1t2

t∆1
1 t∆2

2 e−(t1+t2)2+4ut1t2 . (A.4)

Using the fact that

∫
dt1dt2
t1t2

t∆1+n
1 t∆2+n

2 e−(t1+t2)2 =
4−n

2

Γ
(

∆
2

)
Γ
(

∆+1
2

)

Γ (∆)

Γ(∆1 + n)Γ(∆2 + n)

Γ
(

∆+1
2 + n

) ,
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we may expand the exponential in (A.4) in powers of u and resum to obtain

D2(u) = π
d
2
Γ
(

∆
2

)

Γ (∆)
F

(
∆1,∆2,

∆ + 1

2
, u

)
.

Note that, if we choose

∆1 =
d

2
+ iν , ∆2 =

d

2
− iν ,

the expression for D2(u) is equal to [7]

4πd+1

ν2

Γ (1 + iν) Γ (1− iν)

Γ
(

d
2 + iν

)
Γ
(

d
2 − iν

) Ωiν ,

where Ωiν are the radial Fourier functions in Hd+1. Therefore we have that

Ωiν (w1,w2) =
ν2

4πd+1

Γ
(

d
2 +iν

)
Γ
(

d
2−iν

)

Γ (1 + iν) Γ (1− iν)
×
∫

∂Hd+1

d̃z
|w1|

d
2
+iν |w2|

d
2
−iν

(−2z ·w1)
d
2
+iν (−2z ·w2)

d
2
−iν

.

A.4 Three point function n = 3, m = 3

As is well known, there are no cross-ratios in this case and conformal invariance determines

D (w1,w2,w3) =
D

w
1
2
(∆1+∆2−∆3)

12 w
1
2
(∆1+∆3−∆2)

13 w
1
2
(∆2+∆3−∆1)

23

up to an overall constant D, determined by the integral

2π
d
2

Γ (∆1) Γ (∆2) Γ (∆3)

∫
dt1dt2dt3 t∆1−1

1 t∆2−1
2 t∆3−1

3 e−t1t2−t1t3−t2t3 .

The integral is easily evaluated with the change of variables

t1 =
√

s2s3/s1 , t2 =
√

s1s3/s2, t3 =
√

s1s2/s3 . (A.5)

The volume form
∏

i dti/ti becomes 1
2

∏
i dsi/si, and the integral evaluates to [8]

D = π
d
2
Γ
(

∆1+∆2−∆3
2

)
Γ
(
−∆1+∆2+∆3

2

)
Γ
(

∆1−∆2+∆3
2

)

Γ (∆1) Γ (∆2) Γ (∆3)
. (A.6)

Note that the integral determining D converges for Re(∆i + ∆j −∆k) > 0, which implies

Re ∆i > 0.

A.5 Three point function n = 3, m = 2

Let us now assume that w1 is in the bulk of the Milne wedge. We have a single cross-ratio

u =
−w2

1w23

w12w13
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and the full D-function takes the form

D (w1,w2,w3) =
D3(u)

w
1
2
(∆1+∆2−∆3)

12 w
1
2
(∆1+∆3−∆2)

13 w
1
2
(∆2+∆3−∆1)

23

,

with D3(u) determined by the integral representation

2π
d
2

Γ (∆1) Γ (∆2) Γ (∆3)

∫
dt1dt2dt3 t∆1−1

1 t∆2−1
2 t∆3−1

3 e−t1t2−t1t3−t2t3−u t21 .

Applying the change of variables (A.5) we obtain

π
d
2

Γ (∆1) Γ (∆2) Γ (∆3)
×
∫

ds1ds2ds3

s1s2s3
s

∆2+∆3−∆1
2

1 s
∆1+∆3−∆2

2
2 s

∆1+∆2−∆3
2

3 e
−s1−s2−s3−u

s2s3
s1 .

If we expand the exponential in powers of u, and formally use the integral
∫

ds sa−1e−s =

Γ(a), analytically continued to arbitrary values of a, we obtain the formal result

D F

(
∆1 + ∆2 −∆3

2
,
∆1 + ∆3 −∆2

2
, 1− ∆2 + ∆3 −∆1

2
, u

)
, (A.7)

with the constant D given in (A.6). The computation is, on the other hand, only partially

correct due to the fact that the integral in s1 is evaluated in the region Re a < 0. To deduce

the correct answer, we shall first consider the behavior of the integral D3 (u) for u → 1.

This is achieved by considering the following configuration w1 = (1, 1, 0), w2 = (1, 0, 0),

w3 = (0, 1, 0) which has u = 1 exactly . Choosing the parameterization of Hd+1 given by

y = 1
r

(
1, r2 + y2, y

)
with dy = r−1−ddydr, the integral (A.2) is proportional to

∫ ∞

0

dr

r
r∆−d

∫

Ed

dy

(1 + r2 + y2)∆1 (r2 + y2)∆2
.

We shall assume, as always, that Re ∆ > d, Re ∆3 < Re (∆1 + ∆2) and Re ∆2 <

Re (∆1 + ∆3), which implies Re (∆1 + ∆2) > d/2. The y-integral is therefore convergent

and can be explicitly evaluated. The above expression becomes

π
d
2

∫ ∞

0

dr

r
r∆3−∆1−∆2 F

(
∆1 + ∆2 −

d

2
,∆1,∆1 + ∆2,−

1

r2

)
.

Convergence is now clear. At r =∞ the integrand behaves as r∆3−∆1−∆2−1, whereas close

to r = 0 the two leading behaviors are given by r∆− d
2 and r∆3+∆1−∆2. It is then clear that

the correct choice replacing (A.7) is given by

D3 (u) = D′ F

(
∆1 + ∆2 −∆3

2
,
∆1 + ∆3 −∆2

2
,
∆

2
, 1− u

)
, (A.8)

where the normalization

D′ = π
d
2
Γ
(

∆1+∆2−∆3
2

)
Γ
(

∆1+∆3−∆2
2

)

Γ (∆1) Γ
(

∆
2

)
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has been fixed by requiring that limu→0 D3(u) = D whenever the condition Re (∆2 + ∆3) >

Re ∆1 holds. In the main text, we are especially interested in the case ∆ = d = 2 with

∆2 = ∆3 = 1−iµ
2 . Then we have that

D′ = c(−µ)
64π4

1 + µ2
.

Using the properties of the hypergeometric function, it is now trivial to show that (A.8)

is given by
1

µ2c(µ)
u−

1+iµ

2

(
φµ(u) + φ−µ(u)

)
,

thus showing (3.18).

B. Polynomial impact factors

Let us consider the integral ∫
dµ V (µ) φµ(u) ,

with

V (µ) =
8π3

1 + µ2

Γ
(
σ − 1

2 + iµ
2

)
Γ
(
σ − 1

2 −
iµ
2

)

Γ2 (σ)
.

For u > 0, we may close the contour in the region Im µ < 0. The contribution to the

integral comes from the poles at iµ = 2 (σ + n)− 1, with n a non-negative integer, so that

we obtain the following sum of residues

1

2

∑

n∈N0

(−)n

n!

Γ (2σ + n− 1)

Γ (2σ + 2n− 1)

Γ2(σ + n)

Γ2(σ)
uσ+n F (σ + n, σ + n, 2σ + 2n, u) .

It can be easily checked that the successive powers uσ+n for n ≥ 1 cancel in the above

expression, leaving only the initial n = 0 contribution uσ/2. We have then obtained that
∫

dµ V (µ)
[
φµ(u) + φ−µ(u)

]
= uσ ,

as we needed to show.

C. N = 4 SYM conventions

In this paper, we use standard conventions for N = 4 SYM. For the convenience of the

reader, we quote the most relevant ones. The bosonic part of the SYM action is

1

g2
YM

∫
d4x Tr

(
−1

2
FµνFµν −∇µφi ∇µφi +

1

2
[φi, φj ]

2

)
,

with Fµν = ∂µAν − ∂νAµ − i [Aµ, Aν ] and ∇µφi = ∂µφi − i [Aµ, φi]. The six adjoint real

scalars φi and the gauge field Aµ are written, in the basis of N2− 1 generators of SU (N),

as φi = φa
i T

a and Aµ = Aa
µT a, where we choose the normalization

Tr
(
T aT b

)
=

1

2
δab .
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Figure 13: Perturbative expansion of the impact factor for the operator Tr
(
ZL
)
. We show

explicitly the relevant symmetry factors associated to the permutations of scalar lines without

gluon vertices.

The structure functions fabc are defined as usual as
[
T a, T b

]
= i fabc T c .

Two useful relations are

facd f bcd = N δab ,

(T a)ij (T a)kℓ =
1

2

[
δk
j δi

ℓ −
1

N
δi
jδ

k
ℓ

]
,

which imply, for instance, that

[Tm1 , T a] T a =
N

2
Tm1 . (C.1)

We define the complex fields Z,W by

Z =
1√
2

(φ1 + iφ2) , W =
1√
2

(φ3 + iφ4) .

with propagator

〈Za (x) Z̄b (y)〉 =
g2
YM

4π2

δab

(x− y)2 + iǫ
.

The gauge field propagator Aa
µ (x) Ab

ν (y) in Feynman gauge is also given by the same

expression, with the addition of the spacetime metric ηµν .

D. Impact factor for Tr
(
Z

L
)

In this appendix, we shall compute the impact factor for the operator

O1 = cL Tr
(
ZL
)

,

where the constant cL is fixed by requiring that the 2-point function 〈O1 (x)O⋆
1 (y)〉 be

normalized to |x− y|−2L. The relevant graphs, to leading order in the ’t Hooft coupling

– 33 –



J
H
E
P
0
6
(
2
0
0
8
)
0
4
8

g2, are shown in figure 13. It is quite clear that the spacetime part of the graphs is identical

to that of graphs in figure 11 of section 4.2 for the case L = 2. The only difference comes

from the color structure. To analyze the color factors, we first write the operator O1 as

O1 =
cL

L!
Za1 · · ·ZaL Ta1···aL ,

where

Ta1···aL =
∑

perm σ

Tr (T aσ1 · · ·T aσL ) .

The coefficient cL is then clearly given by

c2
L

L!
Ta1···aLTa1···aL

(
g2
YM

4π2

)L

= 1 .

Now consider the graphs in figure 13, starting from the simplest graphs 13b,c. In

general, the color part is given by

c2
L

(L− 1)!
fm1pa fpn1b Tm1m2···mLTn1m2···mL

(
g2
YM

4π2

)L

.

The above expression is proportional to δab and we may therefore trace over the indices

a, b to obtain the normalization constant

bL = − c2
LN

(L− 1)!
Tm1m2···mLTm1m2···mL

(
g2
YM

4π2

)L

= −NL .

Therefore, the relative contribution of the graphs 13b,c, compared to the basic case L = 2,

is given by
bL

b2
=

L

2
.

Next we analyze the more complex case of graph 13a. The color part is given by

c2
L

(L− 2)!
fm1n1a fm2n2b Tm1m2m3···mLTn1n2m3···mL

(
g2
YM

4π2

)L

.

Again, we trace over a, b to obtain the normalization constant

aL =
c2
L

(L− 2)!
fm1n1afm2n2aT

m1m2m3···mLTn1n2m3···mL

(
g2
YM

4π2

)L

.

To compute explicitly the expression above we must compute the expression

fm1n1a fm2n2a Tm1m2m3···mL Tn1n2m3···mL , given by

L (L− 2)! fm1n1afm2n2a

∑

perm σ

Tr (Tmσ1 · · ·TmσL )

∑

2≤j≤L

Tr (T n1Tm3 · · ·TmjT n2 · · · TmL) .
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Substituting fabcT
c → −i

[
T a, T b

]
and performing the sum over j we obtain

2L (L− 2)!
∑

perm σ

Tr (Tmσ1 · · ·TmσL )Tr ([Tm1 , T a] T aTm2 · · · TmL)

=
N

L− 1
Tm1m2···mLTm1m2···mL ,

where we used equation (C.1). We then have that aL = − bL and that

aL

a2
=

L

2
,

thus proving (4.11).
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